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SUMMARY

Measurements of both gaseous and aerosol atmospheric absorption made with a
differential CO, laser spectrophone system have been reported. The
spectrophone allows in situ measurements to be made on a real-time basis at
frequencies of electro-optical systems and obviates some uncertainties present
in other methods.

In the case of atmospheric gases, the use of this system shows how easily
absorption may be significantly increased due to local and often innocuous
appearing sources. Numerous trace gas pollutants at the 1 ppm level have
absorption coefficients comparable to the ambient absorption and distinqtiyf
spectral patterns for the 9.2mm to 10.8m emission line spectrum of a C O-
laser. These factors suggest that the spectrophone device may be well-suited
for air pollution studies.

Measurement of absorption by atmospheric particulates is more difficult than
for gases. While the interaction between the spectrophone laser beam and the
particles and the acoustical sensing are reasonably well understood, accurate
sampling of all sizes of particles under windy conditions is difficult.
(However, sampling particles with any other currently available technique
faces similar difficulties.) One aspect of the importance of the particulate
component is that of its extreme variability. Quiescent and low-wind
conditions generally produce absorption coefficients that are negligible
compared with the gaseous component at wavelengths around lOm while high
winds and/or anthropogenic disturbances can raise the particulate absorption
by orders of magnitude well above the gaseous component.

3



ACKNOWLEDG4ENT

The authors acknowledge the x-ray analysis performed by J. Whittler of the
White Sands Missile Range Chemistry Laboratory and the aid of Mr. Glenn
Hoidale of this laboratory for his many suggestions made during the
preparation of this report.

4



CONTENTS

INTRODUCTION ......................... ................... ...... 7

BACKGROUND ........................ ... .... .. . . .. ...... ... ........ 7

MEASUREMENT SYSTE ................................................... 8
M EASUREMENTS AND ANALYSIS ........ o.................................. 13

REFERENCES ........................ *.... t.. . . .. ...... .. . ........ 22

SELECTED BIBLIOGRAPHY ........ ........... ................................. 23

I!.

5



INTRODUCTION

Measurement of the absorption due to atmospheric gaseous and particulate
matter at infrared wavelengths is a subject of current interest because of the
relevance to communications, atmospheric sensing, and radiative transfer
problems. Thus far, estimates of atoospheric absorption generally have been
derived from measurements/estimates of the concentration of significant
contributors at the wavelengths of interest. These concentration data are
then converted to absorption coefficients at specific wavelengths. For
gaseous absorption this may involve an insufficient data base of absorption
coefficients, primarily for trace gases. In the case of particles,
assumptions involving both shapes and complex indices of refraction must
generally be made.'

This report discusses the relatively direct in situ field measurements of both
gaseous and particulate absorption made by using a CO, laser spectrophone
system. The spectrophone technique obviates many of the problems associated
with much less direct approaches currently used for obtaining atmospheric
absorption. The measurements were made in the spring of 1978 at a remote
desert site in the White Sands Missile Range (WSMR), New Mexico. Although
both gaseous and particulate absorptions are discussed, the focus is on
absorption by soil-derived dust generated by vehicular traffic.

BACKGROUND

In a previous papers a spectrophone for in situ measurements of atmospheric
gaseous and/or particulate absorption was described. Environmental chamber
measurements on known atmospheric aerosols (quartz and calcite dust) were made
with this system which allows continuous flow through sampling and a high
degree of isolation from acoustic noise. Measurements for known atmospheric
gaseous absorbers (methane,' mmonia, # and water vapors ) have also been

'S. G. Jennings, R. G. Pinnick, and H. J. Auvermann, 1978, "Effects of
Particulate Complex Refractive Index and Particle Size Distribution Variations
on Atmospheric Extinction and Absorption for Visible through Middle-IR
Wavelengths," Appl Opt 17:3922-3928

2C. W. Bruce and R. G. Pinnick, 1977, "In-Situ Measurements of Aerosol
Absorption with a Resonant CU Laser Spectrophone," J Appl Opt, 16:1762-1765

'C. W. Bruce et al, 1976, "Application of Pulsed-Source Spectrophone to
Absorption by Methane at DF Laser Wavelengths," Appl Opt Letters, 15:2970-2972

4R. J. Brewer and C. U. Bruce, 1978, "Photoacoustic Spectroscopy of NH, at the
%m and 1Om 12C 01 Laser Wavelengths," J Appi Opt, 17:3746-3749

9K. 0. White et al, 1978, "Water Vapor Continuum Absorption in the 3.5-4.0 um
Region," Appl Opt, 17:2711-2720
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made with similar spectrophones. In general, the gaseous absorption
measurements were in good agreement with those obtained by using long path
transnission cells with bean folding optics (White cells). In the case of
aerosols, the measurements were compared to Mie theory predictions of
absorption (for spherical homogeneous particles) based on measured particle
size distributions and knowledge of particle complex refractive indices (which
had previously been measured). Though the particles were quite irregular in
shape, the measured and calculated results compared reasonably well (generally
within a factor of 2) for the substances measured.

However, when atmospheric gases and dust are encountered in the field, as they
were during this research, the presence of unknown trace gases and particles
of undefined composition complicates any comparison of spectrophone measured
absorption as compared with that predicted. For gases, comparison presumes
distinctive (and well-known) spectral patterns at the probe laser wavelengths
to permit identification of the species. The particulate comparison is more
complex. In this case, both elements of the comparison are based on
measurements which may involve sampling errors which are hard to define; for
example, they are a function of windspeed and wind direction. Spectrophone
operational parameters (chopping rates and power densities) must be chosen to
ensure adequate response to the particles. Principal criteria for these
choices were that the period of optical bean modulation exceed the thermal
cooling time for the largest contributing absorbing particles and that probe
beam power densities be low enough that optical properties not be
significantly altered for contributing sizes of particles of a given complex
index and thermal diffusivity. Since a light scattering counter was used to
measure particle size and concentration, its response and size resolution for
particles characteristic of soil-derived dust must be defined. Finally, dust
composition must be determined. Additional complications arise from the fact
that the dust composition can be a strong function of size, (but unlikely in
this case) and that refractive index information for the various dust
constituents (which are required for Mie calculations of absorption) have been
reported for only a few specific minerals.

MEASUREMENT SYSTEM

The ensemble of instrumentation consists of a spectrophone system for gaseous
and particulate absorption measurements and correlative measurement
instrumentation including a light scattering aerosol counter, a filter
sampler, and a dew point hygrometer.

A schematic representation of the spectrophone system is shown in figure 1
where the laser beam path is traced through the alternate routes of
spectrometer and spectrophones. Briefly, the differential resonant
spectrophone system consists of two measurement elements. One samples both

6J. 0. Lindberg and J. B. Gillespie, 1977, "Relationship Between Particle Size
and Imaginary Refractive Index in Atmospheric Dust," App Opt, 16:2628-2630
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Figure 1. Schematic (top view) of the portable optical table showing optical
paths for both the CO and the He-Ne alignment lasers, spectrometer
for laser line identification, gas and total absorption
spectrometers, power meter, and two of the auxiliary systems used,
i.e., (EG&G) dew point hygrometer and dust sampling filter using
0.2,a Nuclepore filter elements. Flowmeters are for the
spectrophones and the auxiliary measurements. BS and M refer to
adjacent beam splitters or mirrors.
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gaseous and particulate atmospheric contents through an unfiltered intake; a
second, whose intake is filtered to remove particles, samples only the gaseous
component. The gain-equalized difference signal from the two elemnts is due
to the particles, while switching the total absorption leg of the difference
signal to electrical ground gives only the molecular absorption.

Both spectrophones are cylindrically symmetric with the coaxial laser probe
bean. The gas spectrophone has cell end windows, while the beam and
atmospheric constituents enter the "total" (gas and particle) absorption
spectrophone through the open upper end as illustrated in figure 2. Pcot'stic
wave filters and a microphone designed to promote laminar flow occupy the
central region, followed by a tube with relatively high acoustical inertance
terminating in a calorimeter. This tube is a low pass filter that minimizes
flow noise from the pump connection (where it is not yet laminar) and any
signal due to the interaction of the laser bean with the calorimeter. The CO,
laser used for these measurements is a modified commercial unit (GTE Sylvania
model 948) tunable from approximately 9.15um to 10.8m in about 80 lines.
Signal processing for the spectroplhone system is indicated in the block
diagram of figure 3. Pulsed laser sources could be substituted for the CW
source and signal processing as described previously.'

Considerable attention was given to the calibration of the light scattering
counter (a Knollenberg model CSASP-100) used for measurement of aerosol size
distributions and concentrations. The principle of operation of this
instrument and determination of its response to spherical and nonspherical
particles of various compositions are described in earlier papers.' a
Briefly, the instrument works on the principle that as aerosol flows through
an illuminated volume, light scattered by a single particle into a given (near

forward scattering) solid angle is measured and used to determine particle
size by electronically classifying response pulses according to their

magnitude. To define the Instrument's size resolution for measurement of

soil-derived aerosols, we have measured its response to uniform irregular

particles with refractive indices characteristic of those of soil dust

constituents. The results, which are shown compared to theoretical response

calculations for spheres of equal cross section in figure 4, show that the
instrumental size resolution is defined by an envelope enclosing the

theoretical response curves. This envelope (shown by the dashed curves in
figure 4) indicates what uncertainty in particle size results from a certain
response (or pulse height) measurement, considering the fact that the

'C. W. Bruce et al, 1976, "Application of Pulsed-Source Spectrophone to
Absorption by Methane at OF Laser Wavelengths," Appl Opt Letters, 15:2970-2972

'R. G. Pinnick and H. J. Auvermann, 1979, "Response Characteristics of
Knollenberg Light-Scattering Aerosol Counters," J Aerosol Sct, 10:55-74

8R. G. Pinnick and J. M. Rosen, 1979, "Response of Knollenberg
Light-Scattering Counters to Non-spherical Poublet Polystyrene Latex
Aerosols," J Aerosol St, 10:533-538
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Figure 4. Knollenberg CSASP response: measured (circles) for nonspherical
particles of doublet-shaped polystyrene (refractive index m =
1.592-01), cubical sodiLin chloride (m = 1.54-0), ellipsoidal
potassium chlorate (m - 1.409-01), and slightly nonspherical
pollens and spores (puff balls, lycopodium powder, paper mulberry,
ragweed, sweet vernal, and pecan) (with m = 1.53-01); and
calculated by using Mie theory (smooth solid curves) for spheres of
equal cross section and refractive index. The envelope indicated
by the smooth dashed curves defines an estimate of range of
uncertainty in particle size that results for a particular response
measurement for particles of unknown shape and refractive index.
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particles are irregular and have different compositions (and refractive
indices). This envelope has been extended slightly for application to soil
dust constituents in an attempt to consider their slightly wider range of
refractive indices and more irregular shapes. A curve drawn through the
center of the envelope is then taken as the calibration for the instrument (to
connect instrument response to particle size), and the envelope itself is used
to define the particle sizing errors.

Air flows into both spectrophone and particle counter through intake bells
which attempt to give relatively smooth flow through their measurement region
and approximately isokinetic sampl ing when windspeeds are small.

MEASUREMENTS AND ANALYSIS

The CO laser spectrophone system utilized for measurement of gaseous and
particulate absorption generally can adequately define the spectral dependence
of the particulate absorption in the 9um to 11m region, even though there are
gaps between the four laser bands within this region. Molecular constituents
cannot be completely characterized with the laser source since atmospheric
gaseous absorption lines are more numerous than the laser probe lines and
effectively narrower than the laser line spacing. However, the fixed patterns
of the constituent gases generally do have strong, spectrally distinct
contrasts for the absorbing constituents. This may permit identification of
absorbing gaseous concentrations by deconvolution of the spectra using
self-consistency.'

The measurements were performed partly to survey absorption by ambient
atmospheric gases at the desert site. For purposes of gaseous analysis,
measurements were made for 60 to 80 easily obtained laser lines with an
estimated probable single measurement accuracy of 15 percent. However,
significant changes in the absorption can occur in less time than is required
for a complete manual spectral scan (about 1 to 2 hours). Such changes alter
the observed spectral pattern, and deconvolution of the results may not give
accurate concentrations by self-consistency of the spectra. Use of selected
sets of laser probe lines is much more satisfactory since the measurement
period can be made smaller than that for atmospheric changes. The technique
used for choosing a minimum number of spectral lines is discussed by Samuel et
al.' Water vapor and carbon dioxide produce most of the ambient level
atmospheric absorption in the 9,m to llum almospheric transmission spctr,
"window." Absorption by atmospheric carbon dioxide measured with a C O,
laser probe is an exception to the assumption of distinctive spectra. Here
the band profile of the absorption coefficient peaks varies relatively slow
with wavelength. Examples of distinctive trace gas spectra are those of
ozone, which appeared at levels as high as 0.030 ppm based on coefficients by

9C. Samuel, C. W. Bruce, and R. J. Brewer, 1978, Spectrophone Analysis of Gas
Samples Obtained at Field Site, ASL-TR-0009, Ub Aruv Amospheric Sciences
Laboratory, White Sands missile Range, NM
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Patty,"' and ammonia, which appeared at levels as high as 0.023 ppm based on
coefficients by Brewer.*

For ambient atmospheric conditions, the spectrophone measured net absorption
coefficients ranged from the expected ambient values to several times those
values. The magnitude and temporal variation in the absorption coefficients
during one 3-hour midday period for a number of CO. laser lines are shown in
figure 5. As mentioned, these variations were larger than expected, as was
the average level of the absorption. The ma4or contribution was expected to
ste from carbon dioxide at roughly 0.07 km-' and water vapor at about 0.04
km-  for the relative humidity encountered (about 3 torr). In previous
samples of desert air analyzed in the laboratory, the 9um to Hum gaseous
absorption coefficients were also often approximately twice the expected
value.' In those cases, possible contamination of the stainless sample system
was suspected; however, the flowing sample changed in a matter of seconds,
making contamination highly unlikely. Of course, the presence of personnel
may have contributed to the high absorption. This potential problem will be
avoided in the future by the development of an automated laser tuning system.

To point out the caution needed in interpreting the source of absorption in
spectrophone measurements, several observations regarding interaction between
personnel in the locale and the measurements might be of interest.

At one point, the absorption signal rose off scale (roughly 3x previous value)
and persisted over several spectral lines. Then it was noticed that a
meteorological observer about 15 m upwind was carrying a lighted cigarette.
After the cigarette was extinguished, the absorption returned to previous
levels.

On another occasion a particle counter was being cleanqd with Freon 22 and
acetone about 40 m downwind (windspeed about 7 m s- ). The absorption
coefficient increased when the cleaning began and decreased when the cleaning
stopped. That the increase in absorption was due to these cleaning agents was
obvious from the already familiar spectral dependence of these laboratory
solvents. The increase (labeled t,) relative to a more typical result
(labeled t1 ) is shown in the inset in figure 5 where a segment of the CO1
laser lOum P series is repeated for the two conditions.

'OR. R. Patty et al, 1974, "CO, Laser Absorption Coefficients for Determining
A dient Levels of Os, NH,, and C,H%, Aepl Opt, 13:2850-2854

1R. J. Brewer and C. W. Bruce, 1978, "Photoacoustlc Spectroscopy of NH, at the
9um and 1Om 12C 0, Laser Wavelengths," J Appl Opt, 17:3746-3749
'C. Samuel, C. W. Bruce, and R. J. Brewer, 1978, Spectrophone Analysis of Gas
Samples Obtained at Field Site, ASL-TR-0009, Ub Arn AgmOpheric sciences
Laboratory, wlite Sands Missile Range, NM
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Figure 5. Atmospheric absorption coefficient data illustrating levels
(points) and variations (vertical bar) for a 3-hour midday period
(4 April 1978). Inset is a relative absorption (semilog) plot for
10ul P series CO& laser wavelength segment at two times whose
significance is identified in the text. Straight lines connect
measurement values for ease of identification.
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A strong smell of creosote from a balloon enclosure persisted during some
periods of high absorption, so an off-line spectrophone spectral analysis was
performed in the laboratory on a sample taken from inside the enclosure. The
results showed that creosote could not have been the source of the increase in
absorption.

During measurements of atmospheric absorption under ambient conditions, the
particulate absorption coefficient at lOjm was found to be generally less than
10 percent of the net gaseous absorption. Only occasional passage of
vehicular traffic on the unpaved desert r~ads and one dust devil produced
absorption coefficients larger than 10-' km- .

Next, dust generated by vehicular traffic over the desert terrain was
investigated. To correlate the spectrophone-measured absorption coefficient
with an independent dust measurement, the (previously mentioned) Knollenberg
probe was placed approximately 1 m from the spectrophone probe. The dust
created by repeated circulation of a military truck vigorously driven over
nearby desert terrain was then continuously measured with the spectrophone at
a fixed CO2 laser frequency while the counter accumulated data for consecutive
5-s intervals. The time resolution for the spectrophone was limited to about
1 s by the signal bandwidth used, and again the estimated probable error is 15
percent for particle radii less than lOpm (except for the elusive sampling
errors).

Comparison of spectrophone measurements of absorption coefficient with
calculations based on the Knollenberg data was then attempted. This
comparison goes well beyond correlation of absorption coefficient with
particle densities and requires some knowledge of the dust particle
composition (or refractive index). Therefore, following the tests, vehicular
dust which settled onto the ground was taken to the laboratory for spectral
and chemical analysis.

The spectral analysis was accomplished by dispersing the sample dust in an
environmental chamber and scanning the spectral region of concern using
spectrophone systems similar to those used in the field. The reliability of
these results depends to some degree on the assumption that the size
distribution of redispersed dust samples is the same as it was in the field.'

The chemical analysis was attempted by using two methods: x-ray
diffractometry and infrared spectrophotometric analyses. The x-ray analysis
revealed a strong quartz component but little else since not all of the dust
consisted of crystalline material. The infrared spectrophotometric analysis
was much more informative because of the distinct infrared spectral absorption

IS. G. Jennings, R. G. Pinnick, and H. J. Auvermann, 1978, "Effects of
Particulate Complex Refractive Index and Particle Size Distribution Variations
on Atmospheric Extinction and Absorption for Visible through Mliddle-IR
Wavelengths," Appl Opt, 17:3922-3928
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patterns of the minerals involved.'' In this analysis, the sample
transmission spectra between wavelengths 2.5im to 40mm were measured with a
Perkin Elmer model 521 infrared grating spectrophotometer. The spectral
transmission "fingerprints" of the substance under test were compared with
those of known pure reference samples to assess the fractional composition of
the unknown dust sample.'2  In this spectrometric estimate of mineral
composition, the following assumptions were made: (1) the sample and
reference particulate size spectra are identical functions of those
distributions, (2) the absorption resonance peaks were assumed to be unique to
a particular mineral, and (3) sample and reference minerals were assumed to be
in the same chemical state. Under these assumptions the fractional mineral
composition of the dust sample was then calculated by converting the
transmission spectra to absorption coefficients and scaling the absorption
resonance peaks linearly with mineral mass concentration. The results of this
analysis are shown in table 1. It is noteworthy that the minerals identified
(quartz, montmorillonite, calcite, and gypsum) were also found in naturally
occurring aerosol samples collected within 4 km of where this test was
conducted, although the proportions of each mineral were markedly different."

TABLE 1. RESULTS OF SOIL ANALYSIS WITH COMPLEX INDICES

Identification Fractional Complex Index
Wavelength Composition at 9.55um

Mineral (um) () (nr ni)

Gypsum 2.82 26 2.0, 0.30

Calcite 6.94 14 1.7, 1.20

Montnorillonite 9.80 35 0.86, 1.28

Quartz 12.82 25 1.0, 5.4

The fractional composition values of table 1 and the complex refractive
indices of the constituents, with the Lorenz-Mie theory, can be used to

11G. B. Hoidale and A. J. Blanco, 1969, "Infrared Absorption Spectra of
Atmospheric Dust over an Interior Desert Basin," Pure and Appl Geophys,
74:151-164

12G. Duyckaerts, 1959, "The Infra-Red Analysis of Solid Substances," Analyst,
84:201-214
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calculate the contributions to the total absorption coefficient of each
component. Assumptions made in this process are those of particle sphe-
ricity, homogeneity, and similar size distributions for each constituent. In
addition, for the birefrigent quartz and calcite particles, the absorption was
calculated by considering two populations of particles--one having refractive
index of the ordinary ray and one the extraordinary ray--and adding the ab-
sorption coefficients for these fractional populations on a 2/3 to 1/3 basis.

Presently, even a rough estimate of the effect of these assumptions on the
calculated absorption coefficients would be very difficult. Furthermore, the
complex indices for these constituents are not well-known and montorillonite
(for example) does not have a fixed composition. Quartz is probably the best
defined with respect to index; the others may be accurate within perhaps a
factor of 2.

Figure 6 shows an example of the spectrophone measured dust absorption
coefficients compared to those predicted from the Knollenberg counter dust
size distribution measurements together with the spectrophotometric analysis
of the dust composition. Knollenberg data were taken continuously during this
2-minute period, although the instrument particle count rate excee ed the
maximum reliable rate (determined in the laboratory to be about 1000 s under
these conditions) for several 5-s accumulation intervals. (The pre4ictions of
absorption for this suspect data generally fall above the 100 km"1 level in
figure 6.) In any case, the predicted absorption for all of the Knollenberg
data displays similar temporal variation as the spectrophone measured
absorption, although the values are higher by a factor of 3 to 5. The "error"
bars shown for the Knollenberg-based predictions indicate only possible error
caused by uncertainty in particle size determination made from the counter
measurements; no estimate of errors accompanying the assumption of spherical
particles, of the approximate treatnent for birefringent particles, and of the
assumption of similar size distribution for each dust mineral constituent wasattempted.

Thus, in view of the multitude of rather critical assumptions made in
predicting absorption from the Knollenberg size distribution data, and
considering that the aerosol sampling losses may be significant and different
for the spectrophone and Knollenberg sensors, agreement of the measured and
predicted absorption in figure 6 is considered respectable.

To determine how much absorption (at the 9.21um wavelength) is contributed by
particles of various sizes the differential absorption coefficients were
calculated from the Knollenberg size distribution measurements. The results
for 35 s of data (corresponding to times denoted a-g in figure 6) are
presented in figure 7. These results suggest that the absorption is dominated
by particles with radii in the lm to 5m range regardless of dust loading.

Spectrophone measurements of the spectral dependence of the absorption for the
vehicular dust redispersed in a laboratory environmental chamber are shown in
figure 8. Because of the uncertainties mentioned earlier for the complex
indices of the dust constituents, no attempt was made to calculate a result

18



VECHICULAR DUST
X a 9.21 L ---- MIE PREDICTIONS FROM

KNOLLENBERG C04JNTER
SPECTROPHONE MEAS.

I 
T'd''Ii

LUII U I

i: 
:o' 1'"

d I

l o

F I!

II
I

• 

III!

TIM E ( se ds) 

I

SF 
igure 6. Absorpt ion coefficient of veh icle dust at the 9.21 tim, R(34) Co g

•laser 
line as a funct ion of t me dur ing the test: measured w ith n

situ spectrophne 
(solid line); and calculated 

from particle size

distribution 
measurements 

made with a Knollenberg 
light scattering

aerosol counter (dashed 
line). The 'error" bars superimposed 

on

the Knollenberg-based 
predictions 

ndcate only the error caused by

uncertinty n particle size detemination 
Other sources of error

n the predictions (see text) and differences n the spectrophone

and Knollenberg probe sampling effciencies are expected to cause

the remaining discrepancy between measured and predicted

absorption.
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VEHICULAR DUST
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Figure 7. Differential absorption coefficients of vehicular dust showing that
ipm to 5;m (equivalent) radius particles dominate absorption at the
9.21pm CO, laser line. These coefficients are calculated from the
Knollenberg size distribution measurements made at times a-g (in
figure 6) together with estimates of the vehicular dust refractive
indices (see text for additional details of this calculation).
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for cmparison. However, the spectral profiles for quartz and calcite dusts
measured with spectrophones (for similar size distributions) and transmission
spectra for montmorillonite and gypsum measured with the spectrophotometer
techniques suggest that the strong absorption feature in the 9,m region in
figure 8 is due partly to quartz, but that its broad character and its
extension past 9.6on is probably due to the presence of clay minerals such as
montmorillonite.
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Figure 8. Spectrophone absorption measurements of the spectral dependence of
samples of vehicle dust.
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